NMSAT :: Networked Music & SoundArt Timeline

1881 __ The Graphophone
Charles Sumner Tainter (1854-1940), Chichester Bell (1848-1924)
Comment : The graphophone was an improved version of the phonograph invented through the laboratories of Alexander Graham Bell. It took five years of research under the directorship of Charles Sumner Tainter and Chichester Bell to develop and distinguish the machine from Thomas Edison's phonograph. The graphophone used a floating stylus to cut hill and dale grooves into a wax-coated cardboard cylinder. The sound quality was significantly better than the sound quality of Edison's machine. Because at this time recording was a mechanical process rather than an electromechanical process, it was called acoustic recording. The Graphophone is propelled mechanically. The whole has been designed to attain the best results with the fewest parts, in absence of skilled attention. There is no electricity. An ordinary treadle like a sewing machine rotates a speed governor. This leather belt communicates a constant speed to the rotating wax cylinder. A diaphragm of mica carrying a steel graver, called the recorder, is mounted in a metal holder, which by means of a revolving screw traverses the wax cylinder, cutting a fine thread 160 to the inch, a mouth-piece attached to a flexible tube carries the sound vibrations to the diaphragm which causes the graver or style to cut into the wax a series of depressions more or less frequent, and varying in depth according to the sounds producing the vibrations. These undulations, while so slight as to be scarcely perceptible, can, nevertheless, produce in the diaphragm of the reproducer similar vibrations to the original sounds and give back, not once, but indefinitely, the words or sounds which were first recorded. The instrument can be instantly stopped or started at any time, whether recording or reproducing, by simply pressing the button with the finger. No adjustments are required by the user, the recorder and reproducer being mounted flexibly and so adapting themselves to any eccentricities of the wax cylinder. This is especially useful in the reproduction of damaged cylinders. I had an instance recently where one came to me through the post having, been opened and crushed. Nevertheless the delicate reproducer, with its flexible mountings was able to follow the original record, and reproduce every word distinctly. Great economy has been found in the use of a cardboard cylinder coated with wax instead of solid wax cylinders. They are more easily handled, less liable to fracture, and much better for postage, besides being cheaper than note paper, when the saving of time in writing is considered. (Henry Edmunds)In the spring of 1881 a special arrangement was made between Professor Alexander Graham Bell, the inventor of the Telephone, Dr. Chichester A. Bell, and Charles Sumner Tainter, resulting in the formation the "Volta" Laboratory Association, so called after the "Volta Prize" of 50,000 pounds awarded to Prof. Bell by the French Government for his invention of the Telephone, which sum he thus devoted to scientific research, and the study and elaboration of ideas, inventions, and discoveries, relating to the art of transmitting, recording, and reproducing sounds, and in Mr. Tainter's own words: " We began work in this direction by studying the causes of failure in the Phonograph. We saw that its construction was not in the first place adapted to produce in the metal foil an exact record of the sonorous vibrations; since, owing to the pliability of the material, the action of the stylus, while forming the record, has a tendency to alter and distort the portion immediately back of the point of action. Another cause of inaccuracy was due to the action of the reproducing diaphragm, which, while acted upon positively by the stylus in one direction, that is, when the latter was raised by an elevation in the record, had to re-act by its elasticity in the other. Furthermore, it was very evident that an instrument forming a record in a pliable strip could never be practically successful, since the record was essentially perishable. The utmost care was necessary in handling it to prevent injury, and every attempt at reproduction tended to smooth out and obliterate the sound record. It became evident, therefore, at the outset, that the methods of indenting a pliable strip, whether of tinfoil, or of paper saturated with wax or a similar composition , involved elements of failure that could not be eliminated; that it would be useless to attempt recording the Phonograph, and that all entirely different mode of recording in a substance not possessing the detrimental properties of the pliable strip or sheet. must be discovered. We immediately addressed ourselves to that discovery and its practical embodiment. From the experience had with it pliable strip, we soon determined that the record, to be permanent, must be produced in a plate of solid recording material. Among the new methods proposed by us for forming the undulatory record, that regarded with most favour was to engrave the record directly in the solid material by a cutting style adapted to grave or gouge out the material acted upon, thus forming a groove, the bottom of which presented irregularities constituting the sound record. One of the main difficulties with the original Phonograph was its indistinctness of articulation. While giving a loud sound, it was utterly impossible to reproduce intelligible speech, and for that reason in exhibiting the instruments, experiments were confined to recording familiar nursery rhymes and songs which the ear could recognize from the rhythm. We found, in the course of our experiments, that while records cut in wax were much more perfect than those indented in metal foil, greater distinctness could also he gained by reducing the size of the record and concentrating the sound by hearing tubes in the listener's ear. Thus at double advantage was gained; for besides the vastly improved articulation, privacy in the use of the instruments was ensured. A number of instruments could utter their distinct messages in each listener's ear without mutual disturbance; and the overhearing of private communications was prevented.". (Henry Edmunds - The Graphophone, 1888)
Source : Edmunds, Henry (1888), “The Graphophone", paper read 7 September, 1888, at Section G of the British Association for the Advancement of Science, Bath Meeting, copy in the Tainter Papers, Smithsonian National Museum of American History, Washington, D. C..
Urls : http://history.sandiego.edu/GEN/recording/ar312.html (last visited )

No comment for this page

Leave a comment

:
: