NMSAT :: Networked Music & SoundArt Timeline

1964 __ « The Computers of Tomorrow »
Martin Greenberger (?-?)
Original excerpt 1 : « Nineteen years ago, in the July, 1945, issue of the Atlantic, Vannevar Bush predicted that the "advanced arithmetical machines of the future" would be (a) electrical in nature, (b) far more versatile than accounting machines, (c) readily adapted for a wide variety of operations, (d) controlled by instructions, (e) exceedingly fast in complex computation, and (f) capable of recording results in reusable form. Tens of thousands of computers have been perfected and successfully applied in the past two decades, and each one attests to the remarkable clarity of Dr. Bush's vision. Few of his readers in 1945 could have imagined the major strides that were about to be made in computer technology. Dr. Bush himself was only extrapolating from the technology of the time in these particular predictions. He did not assume the concept of internally stored programming, described by John von Neumann the following year; nor did he bank on the perfection of electronic logic, magnetic cores, and transistors. Yet, in a functional sense, his predictions scored a virtual bull's-eye. Only a decade ago, in 1954, a UNIVAC was delivered to the General Electric Company in Louisville for business use. Up to that point, computers had been applied almost exclusively to scientific calculation. Quickly, payroll, inventory, and customer accounting became fair game. Today there are probably more than twenty thousand computers in use within the United States, and correspondingly large numbers are installed in many other countries around the world. Computers run at speeds of up to millions of operations per second, and do so with negligible rates of error. Their linguistic abilities have been broadened impressively through development of elaborate programming systems, and their memories can be virtually unlimited in size over a range of times of recall. By achieving reliability along with capability, computers have won broad commercial acceptance. But what of the future? What can we expect as computers enter their third decade? Some conservatives have been predicting a deceleration of computer growth for at least five years now. Is there a plateau just over the horizon? [...] The Information Utility.The concept of an information-processing utility poses many questions. Will the role of information utilities be sufficiently extensive and cohesive to create a whole new industry? If so, will this industry consist of a single integrated utility, like American Telephone and Telegraph, or will there be numerous individual utilities, like Consolidated Edison and the Boston Gas Company? Will the design and manufacture of computing components, terminal equipment, and programming systems be accomplished by subsidiaries of the information utility, as in the telephone industry, or will there be a separate industry of independent private manufacturers, like General Electric and Westinghouse in today's electrical equipment industry? Perhaps the most important question of all concerns the legal matter of government regulation. Will the information utility be a public utility, or will it be privately owned and operated? Will some large companies have their own information utilities, just as some companies today have their own generating plants? Central to all these questions is the matter of cost. Computation, like electricity and unlike oil, is not stored. Since its production is concurrent with its consumption, production capacity must provide for peak loads, and the cost of equipment per dollar of revenue can soar. The high cost of capital equipment is a major reason why producers of electricity are public utilities instead of unregulated companies. A second reason is the extensive distribution network they require to make their product generally available. This network, once established, is geographically fixed and immovable. Wasteful duplication and proliferation of lines could easily result if there were no public regulation. Given the advanced state of development of present communications lines, it is unlikely that information utilities will wish to invest in their own communication networks. This may be taken as an argument against the necessity for stifling free competition and placing information utilities under public regulation; yet, there is another massive investment that the information utilities will not be able to sidestep as easily, if at all -- namely, investment in the large programming systems required to supervise the operation of the information utility and provide its services. The information utility should be able to shift part of this burden to the shoulders of its customers, but it will have to bear responsibility itself for the design, maintenance, and modification of the core of the programming system. The vast potential magnitude of this system, plus the fact that its usefulness may not extend beyond the physical machinery for which it was constructed, plus the possibility of programming waste from having too many entries in the field, may tip the balance in favor of a regulated monopoly. In summary, a very substantial amount of capital is needed in the development of information utilities, capital to furnish both equipment and programming. Thus, even if no new communication lines of a proprietary nature are required, the public-utility format may still prove to be the best answer. On the other hand, one very persuasive reason for the private-company format is the stimulating effect of free enterprise and competition on imagination and hard work -- vital prerequisites for realization of the information utility. Whichever way the balance tips, it is clear that information utilities will be enterprises of considerable size. If they form an industry of private companies, then the industry probably will be dominated by one or two firms of giant proportions. Logical candidates among existing companies include not only the large communication and computer enterprises, but also the big computer users. [...] - INFORMATION, PLEASE.The range of application of the information utility extends well beyond the few possibilities that have been sketched. It includes medical-information systems for hospitals and clinics, centralized traffic control for cities and highways, catalogue shopping from a convenience terminal at home, automatic libraries linked to home and office, integrated management-control systems for companies and factories, teaching consoles in the classroom, research consoles in the laboratory, design consoles in the engineering firm, editing consoles in the publishing office, computerized communities. Different subscribers to the same information utility will be able to use one another's programs and facilities through intersubscriber arrangements worked out with the utility on a fee basis. As more and more of these services are perfected, an increasing percentage of the day-to-day functioning of man, the economy, and society will become documented and mechanically recorded in easily accessible form. It will no longer be necessary to conduct costly surveys and door-to-door interviews to acquire data on consumer tastes or investment behavior, at times only to find that the data are inappropriate or anachronistic for the needs of research. Research investigators will specify their precise data requirements and will requisition custom studies from the files of the information utility. The studies will be timely and current, and a great boon to analysts and simulators. As their use develops, these data studies will be invaluable for corporate decision-making and government planning, to the point where they may be woven into the very fabric of these processes. It is not a mere flight of fancy to anticipate the day when information automatically acquired during the operation of the information utility feeds directly into decision mechanisms that regulate the economy and the activity of companies. The information service may be conducted by the information utility itself, by a subsidiary, or by one or more of the subscribers. The information service represents a profitable and natural fulfillment of the utility's role and function. Revenue is created by the utility on both ends of the data line -- for example, in the production of sales data, when the utility can charge for making a money transaction unnecessary; and again in the marketing of this same data, when the utility can charge for providing detailed information that would be costly and difficult to obtain any other way. - SIMULATION, PLEASE.Among the chief potential users of custom information are persons engaged in simulation studies and dynamic modeling. Simulation is about the most promising approach known for the general analysis of complex systems and stochastic processes. On the operating level, it affords the user a way of asking the question, what if. The use of simulation by staff specialists, systems analysts, decision makers, social scientists, and others will markedly expand as the information utility makes powerful computers and programming systems easily accessible. Most users of simulation will not have the knowledge or desire to build their own models, especially as simulation starts being applied by line managers and operating personnel. Assistance in the formulation, adjustment, and validation of models will be provided by an on-line simulation center, joined by the information utility to both the users and the relevant information sources. Simulation service, like information, will be obtained by a procedure as simple as dialing a telephone number. A simulation service could be of great value as a proving ground for development of an early form of information utility, and could provide a bootstrap for further refinement of the utility. Each contemplated service could be designed by successive approximations, simulated, and revised before it is instituted. This is especially important for a service such as the automated stock exchange, where design errors can cost millions of dollars and experiments on the real system are impractical. In addition, a working prototype of the exchange, displayed by the simulation service, could persuade the doubtful and the wary. Barring unforeseen obstacles, an on-line interactive computer service, provided commercially by an information utility, may be as commonplace by 2000 AD as telephone service is today. By 2000 AD man should have a much better comprehension of himself and his system, not because he will be innately any smarter than he is today, but because he will have learned to use imaginatively the most powerful amplifier of intelligence yet devised. »
French translated excerpt 2 : « À moins de circonstances imprévues, un service interactif en ligne fourni par une société commerciale sera aussi courant en l'an 2000 que le téléphone aujourd'hui. »
Source : Greenberger, Martin (1964), “The Computers of Tomorrow”, The Atlantic Monthly; May, 1964, Volume 213, No. 5, pp. 63-67.
Urls : http://www.theatlantic.com/unbound/flashbks/computer/greenbf.htm (last visited )

No comment for this page

Leave a comment